已知函数fx=loga(1-x),gx(1+x)(a>0且a不等于1). 若函数Gx=f
已知函数fx=loga(1-x),gx(1+x)(a>0且a不等于1).若函数Gx=fx-gx,b,c属于(-1,1),求证Gb+Gc=G(b+c/1+bc)...
已知函数fx=loga(1-x),gx(1+x)(a>0且a不等于1). 若函数Gx=fx-gx,b,c属于(-1,1),求证Gb+Gc=G(b+c/1+bc)
展开
1个回答
展开全部
G(b)=loga[(1-b)/(1+b)]
G(c)=loga[(1-c)/(1+c)]
G(b)+G(c)
=loga{[(1-b)(1-c)]/[(1+b)(1+c)]
=loga{[(1+bc)-(b+c)]/[(1+bc)+(b+c)]}
=loga{[1-(b+c)/(1+ab)]/[1+(b+c)/(1+bc)]}
=G[(b+c)/(1+bc)]
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点【满意】即可。~如还有新的问题,另外发问题并向我求助或在追问处发送问题链接地址。
小朋友,哥哥为你加油哦!
G(c)=loga[(1-c)/(1+c)]
G(b)+G(c)
=loga{[(1-b)(1-c)]/[(1+b)(1+c)]
=loga{[(1+bc)-(b+c)]/[(1+bc)+(b+c)]}
=loga{[1-(b+c)/(1+ab)]/[1+(b+c)/(1+bc)]}
=G[(b+c)/(1+bc)]
~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点【满意】即可。~如还有新的问题,另外发问题并向我求助或在追问处发送问题链接地址。
小朋友,哥哥为你加油哦!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询