如图,点O为正方形ABCD的对角线的交点,点E、F分别在DA、CD的延长线上,且AE=DF,连BE

如图,点O为正方形ABCD的对角线的交点,点E、F分别在DA、CD的延长线上,且AE=DF,连BE、AF.延长FA交BE于G,(1)求证:FG⊥BE;(2)连OG,求∠O... 如图,点O为正方形ABCD的对角线的交点,点E、F分别在DA、CD的延长线上,且AE=DF,连BE、AF.延长FA交BE于G,(1)求证:FG⊥BE;(2)连OG,求∠OGF的度数;(3)若AE=求OG的长 展开
月亮下的采集者
2014-05-08 · TA获得超过1万个赞
知道大有可为答主
回答量:2149
采纳率:77%
帮助的人:1867万
展开全部
(1)求证;BE⊥AF;
(2)延长FA交BE于G,连OG,求∠OGF的度数;
(3)在(2)中,若AE=√5,AB=2√5,求OG的长。
解:
(1)在RT△ABE和RT△ADF中
∵AE=DF AB=AD
∴△ABE≌△ADF
∴∠A1=∠B
∠A1=∠A2(对顶)
 ∠A2+∠E=90°
∴BE⊥FG(AF的延长线)即BE⊥AF
(2)连接OE 并在AF上取FH=EG得H点
在△OAE和△ODF中
AE=DF OA=OD ∠OAE=∠ODC(都是90+45)
∴△OAE≌△ODF
∴OE=OF ∠3=∠4
∵OA⊥OD ∴OE⊥OF
∴△EOF是等腰直角三角形
∴OG⊥OH(相当于随AE旋转了90)
∴△OGH也是等腰直角三角形
∴∠OGF=∠OHG=45°
(3)若AE=√5,AB=2√5,求OG的长。
在RT△AEG和RT△ABE中,
EG/AE=AE/BE (BE=√(AE²+AB²)=√(5+20)=5
∴EG=AE²/BE=5/5=1
又GA/AB=EG/AE
∴GA=AB*EG/AE =2√5*(1/ √5)=2
∴GH=GF-HF=(AF+AG)-HF=(BE+AG)-EG=(5+2)-1=6
∴OG=(√2)/2*HG=3√2
yuanyuanzhu472
2014-05-05 · TA获得超过881个赞
知道小有建树答主
回答量:580
采纳率:50%
帮助的人:349万
展开全部
AE=、???
更多追问追答
追问

AE=根号5 AB=2根号5
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式