x^3+y^3+z^3-3xyz用因式定理的思路因式分解
2个回答
展开全部
设f(x)=x^3-(3yz)x+y^3+z^3
其中y^3+z^3=(y+z)(y^2-yz+z^2),即f(x)=x^3-(3yz)x+(y+z)(y^2-yz+z^2)
尝试得(x+(y+z))为原式的因式,因为f(-(y+z))=-(y+z)^3+(3yz)(y+z)+y^3+z^3=0
于是用大除法计算(x^3-(3yz)x+y^3+z^3)/(x+(y+z)),得到另一因式为x^2-(y+z)x+y^2+z^2-yz
最后整理得到(x+y+z)(x²+y²+z²-xy-xz-yz)
其中y^3+z^3=(y+z)(y^2-yz+z^2),即f(x)=x^3-(3yz)x+(y+z)(y^2-yz+z^2)
尝试得(x+(y+z))为原式的因式,因为f(-(y+z))=-(y+z)^3+(3yz)(y+z)+y^3+z^3=0
于是用大除法计算(x^3-(3yz)x+y^3+z^3)/(x+(y+z)),得到另一因式为x^2-(y+z)x+y^2+z^2-yz
最后整理得到(x+y+z)(x²+y²+z²-xy-xz-yz)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询