x^3+y^3+z^3-3xyz用因式定理的思路因式分解

G弦上的华彩
2014-01-22 · 超过25用户采纳过TA的回答
知道答主
回答量:54
采纳率:0%
帮助的人:56.4万
展开全部
设f(x)=x^3-(3yz)x+y^3+z^3
其中y^3+z^3=(y+z)(y^2-yz+z^2),即f(x)=x^3-(3yz)x+(y+z)(y^2-yz+z^2)
尝试得(x+(y+z))为原式的因式,因为f(-(y+z))=-(y+z)^3+(3yz)(y+z)+y^3+z^3=0
于是用大除法计算(x^3-(3yz)x+y^3+z^3)/(x+(y+z)),得到另一因式为x^2-(y+z)x+y^2+z^2-yz
最后整理得到(x+y+z)(x²+y²+z²-xy-xz-yz)
csdygfx
2014-01-22 · TA获得超过21.4万个赞
知道顶级答主
回答量:9.1万
采纳率:86%
帮助的人:8亿
展开全部
x^3+y^3+z^3-3xyz
=x³+3x²y+3xy²+y³ +z³ -3xyz-3xy²-3x²y
=(x+y)³+z³ -3xy(x+y+z)
=(x+y+z)[(x+y)²-(x+y)z+z²]-3xy(x+y+z)
=(x+y+z)(x²+y²+z²-xy-xz-yz)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式