已知x²+y²=1求z=(y+2)/(x+2)最大值与最小值
展开全部
z=(y+2)/(x+2)→z·x-y=2-2z.
构造向量m=(z,-1),n=(x,y),
则依向量模不等式|m·n|≤|m|·|n|
得[z²+(-1)²](x²+y²)≥(zx-y)²=(2-2z)²
即3z²-8z+3≤0→-1/3≤z≤3.
故:z|max=3; z|min=-1/3。
本题目解法灰常多,比如:
三角代换法、数形结合法、构造法(构造向量或复数)、柯西不等式法等。
构造向量m=(z,-1),n=(x,y),
则依向量模不等式|m·n|≤|m|·|n|
得[z²+(-1)²](x²+y²)≥(zx-y)²=(2-2z)²
即3z²-8z+3≤0→-1/3≤z≤3.
故:z|max=3; z|min=-1/3。
本题目解法灰常多,比如:
三角代换法、数形结合法、构造法(构造向量或复数)、柯西不等式法等。
更多追问追答
追问
帅哥,有木有简单的方法,,,这个实在看不懂。。。。
非常感谢,。。。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询