1个回答
展开全部
1/n(n+1)(n+2)
=1/n(n+1)-1/n(n+2)
=1/n-1/(n+1)- 1/2[1/n-1/(n+2)]
=(1/2)[1/n+1/(n+2)]-1/(n+1)
1/6*7*8=(1/2)(1/6+1/8)-1/7
1/7*8*9=(1/2)(1/7+1/9)-1/8
1/8*9*10=(1/2)(1/8+1/10)-1/9
---
1/48*49*50=(1/2)(1/48+1/50)-1/49
所以:1/6*7*8+1/7*8*9+1/8*9*10+...+1/48*49*50
=(1/2)(1/6+1/8+1/7+1/9+1/8+1/10+---+1/48+1/50)-(1/7+1/8+1/9+--+1/49)
=(1/2)(1/6-1/7)+(1/2)(1/50-1/49)=(1/2)((1/6-1/7+1/50-1/49)
=(1/2)*(1/42-1/2450)
=1/n(n+1)-1/n(n+2)
=1/n-1/(n+1)- 1/2[1/n-1/(n+2)]
=(1/2)[1/n+1/(n+2)]-1/(n+1)
1/6*7*8=(1/2)(1/6+1/8)-1/7
1/7*8*9=(1/2)(1/7+1/9)-1/8
1/8*9*10=(1/2)(1/8+1/10)-1/9
---
1/48*49*50=(1/2)(1/48+1/50)-1/49
所以:1/6*7*8+1/7*8*9+1/8*9*10+...+1/48*49*50
=(1/2)(1/6+1/8+1/7+1/9+1/8+1/10+---+1/48+1/50)-(1/7+1/8+1/9+--+1/49)
=(1/2)(1/6-1/7)+(1/2)(1/50-1/49)=(1/2)((1/6-1/7+1/50-1/49)
=(1/2)*(1/42-1/2450)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询