一道高二的圆的数学题。。。求解。。。

定点A(-1,-√3)在圆x^2+y^2=4上,已知点A对于动弦BC,总有∠BAC=π/6,求△ABc的最大面积。一道高二的圆的数学题。。。求解。。。很急啊。。~~~~~... 定点A(-1,-√3)在圆x^2+y^2=4上,已知点A对于动弦BC,总有∠BAC=π/6,求△ABc的最大面积。
一道高二的圆的数学题。。。求解。。。 很急啊。。~~~~~
展开
惟爱小丫
2011-01-03 · TA获得超过5472个赞
知道小有建树答主
回答量:229
采纳率:0%
帮助的人:293万
展开全部
因为弦BC的圆周角是30°,所以对应的圆心角是60°,也就是说△BOC是等边三角形,则BC长等于半径=2,那么△ABC就是底边长确定,高在变化的三角形。也就是说让高越长,三角形面积越大。那么连接AO,使BC垂直于AO,AO长=2+√3,那么面积max=2*(2+√3)*?=2+√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式