在Rt三角形ABC中∠ABC=90°CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是
在Rt三角形ABC中∠ABC=90°CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证FK∥AB感谢各位伸出援助之手...
在Rt三角形ABC中∠ABC=90°CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE,求证FK∥AB感谢各位伸出援助之手
展开
2个回答
展开全部
证明:过点K作MK∥BC,
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK∥BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK∥BF,
四边形BFKM是平行四边形,(2分)
∴FK∥AB.(2分)
∵AE平分∠BAC,
∴∠BAE=∠CAE,
又∵∠ACB=90°,CD⊥AB,
∴∠BAE+∠DKA=∠CAE+∠CEA=90°,
∴∠DKA=∠CEA,
又∵∠DKA=∠CKE,
∴∠CEA=∠CKE,∴CE=CK,又CE=BF,
∴CK=BF(4分)
而MK∥BC,
∴∠B=∠AMK,
∴∠BCD+∠B=∠DCA+∠BCD=90°,
∴∠AMK=∠DCA,
在△AMK和△ACK中,
∴∠AMK=∠ACK,AK=AK,∠MAK=∠CAK,
∴△AMK≌△ACK,(4分)
∴CK=MK,
∴MK=BF,MK∥BF,
四边形BFKM是平行四边形,(2分)
∴FK∥AB.(2分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询