已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(

已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)当m为何整数时,原方程的根也是整数.... 已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)当m为何整数时,原方程的根也是整数. 展开
 我来答
才言47
2014-11-16 · TA获得超过213个赞
知道答主
回答量:112
采纳率:66%
帮助的人:51.2万
展开全部
(1)证明:△=(m+3)2-4(m+1)=m2+6m+9-4m-4=m2+2m+5=(m+1)2+4,
∵(m+1)2≥0,
∴(m+1)2+4>0,
则无论m取何实数时,原方程总有两个不相等的实数根;
(2)解:关于x的一元二次方程x2+(m+3)x+m+1=0,
利用公式法解得:x=
?m?3±
(m+1)2+4
2

要使原方程的根是整数,必须使得(m+1)2+4是完全平方数,
设(m+1)2+4=a2,变形得:(a+m+1)(a-m-1)=4,
∵a+m+1和a-m-1的奇偶性相同,
可得
a+m+1=2
a?m?1=2.
a+m+1=?2
a?m?1=?2.

解得:
a=2
m=?1.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消