已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(
已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)当m为何整数时,原方程的根也是整数....
已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)当m为何整数时,原方程的根也是整数.
展开
1个回答
展开全部
(1)证明:△=(m+3)2-4(m+1)=m2+6m+9-4m-4=m2+2m+5=(m+1)2+4,
∵(m+1)2≥0,
∴(m+1)2+4>0,
则无论m取何实数时,原方程总有两个不相等的实数根;
(2)解:关于x的一元二次方程x2+(m+3)x+m+1=0,
利用公式法解得:x=
,
要使原方程的根是整数,必须使得(m+1)2+4是完全平方数,
设(m+1)2+4=a2,变形得:(a+m+1)(a-m-1)=4,
∵a+m+1和a-m-1的奇偶性相同,
可得
或
,
解得:
或
∵(m+1)2≥0,
∴(m+1)2+4>0,
则无论m取何实数时,原方程总有两个不相等的实数根;
(2)解:关于x的一元二次方程x2+(m+3)x+m+1=0,
利用公式法解得:x=
?m?3±
| ||
2 |
要使原方程的根是整数,必须使得(m+1)2+4是完全平方数,
设(m+1)2+4=a2,变形得:(a+m+1)(a-m-1)=4,
∵a+m+1和a-m-1的奇偶性相同,
可得
|
|
解得:
|
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|