如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点P从点A开始沿AB边向点B以每秒3cm的速度

如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点P从点A开始沿AB边向点B以每秒3cm的速度移动,点Q从点C开始沿CD边向点D... 如图,在等腰梯形ABCD中,AB∥DC,AD=BC=5cm,AB=12cm,CD=6cm,点P从点A开始沿AB边向点B以每秒3cm的速度移动,点Q从点C开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止.设运动时间为t秒.(1)求证:当t=32时,四边形APQD是平行四边形;(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由. 展开
 我来答
时代复分1md
推荐于2016-05-26 · TA获得超过323个赞
知道答主
回答量:114
采纳率:0%
帮助的人:138万
展开全部
(1)证明:∵
12
3
6
1

∴当t=4秒时,两点停止运动,在运动过程中AP=3t,CQ=t,
∴BP=12-3t,DQ=6-t,
当t=
3
2
时,DQ=6-
3
2
=
9
2
,AP=3×
3
2
=
9
2

∴AP=DQ,
又∵四边形ABCD为等腰梯形,
∴AP∥DQ,
∴四边形APQD为平行四边形;

(2)能,当t=3秒时,PQ平分对角线BD.
连接BD交PQ于点E,若PQ平分对角线BD,则DE=BE,
∵CD∥AB,
∴∠1=∠2,∠3=∠4,
在△DEQ和△BEP中,
∠3=∠4
∠1=∠2
DE=BE

∴△DEQ≌△BEP(AAS),
∴DQ=BP,
即四边形DPBQ为平行四边形,
∴6-t=12-3t,
解得t=3,符合题意,
∴当t=3秒时,PQ平分对角线BD.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式