已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}
已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)求数列{|an...
已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.(Ⅰ)求数列{an}和{bn}的通项公式;(Ⅱ)求数列{|an-bn|}的前n项的和Sn.
展开
1个回答
展开全部
(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,则
,解得
,
所以an=-2n+13,bn=2n-1;
(Ⅱ)由(Ⅰ)得:|an-bn|=|13-2n-2n-1|;
(i)0<n≤3时,an>bn,an-bn=13-2n-2n-1,Sn=
-
=-2n-n2+12n+1,且S3=20;
(ii)n>3时,an<bn,|an-bn|=bn-an=2n-1-(13-2n),
Sn-S3=
-
=2n+n2-12n+19,
∴Sn=2n+n2-12n+39;
综上所述,Sn=
|
|
所以an=-2n+13,bn=2n-1;
(Ⅱ)由(Ⅰ)得:|an-bn|=|13-2n-2n-1|;
(i)0<n≤3时,an>bn,an-bn=13-2n-2n-1,Sn=
(11?2n+13)n |
2 |
1×(1?2n) |
1?2 |
(ii)n>3时,an<bn,|an-bn|=bn-an=2n-1-(13-2n),
Sn-S3=
8(1?2n?3) |
1?2 |
(5?2n+13)(n?3) |
2 |
∴Sn=2n+n2-12n+39;
综上所述,Sn=
|