已知函数f(x)=13x3+12ax2+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(-1,0),x2∈(0,1)
已知函数f(x)=13x3+12ax2+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(-1,0),x2∈(0,1),则a+2b+4a+2的取值范围是()A....
已知函数f(x)=13x3+12ax2+bx+c在x1处取得极大值,在x2处取得极小值,满足x1∈(-1,0),x2∈(0,1),则a+2b+4a+2的取值范围是( )A.(0,2)B.(1,3)C.[0,3]D.[1,3]
展开
展开全部
解:∵f(x)=
x3+
ax2+bx+c,
∴f′(x)=x2+ax+b
∵函数f(x)在区间(-1,0)内取得极大值,在区间(0,1)内取得极小值,
∴f′(x)=x2+ax+b=0在(-1,0)和(0,1)内各有一个根,
f′(0)<0,f′(-1)>0,f′(1)>0
即
,
在aOb坐标系中画出其表示的区域,如图,
∵A(0,-1),B(1,0),C(-1,0),
∴把A(0,-1)代入
,得到:
=1;
把B(1,0)代入
,得到:
=
;
把C(-1,0)代入
,得到:
=3.
∴
的取值范围是(1,3).
故选B.
1 |
3 |
1 |
2 |
∴f′(x)=x2+ax+b
∵函数f(x)在区间(-1,0)内取得极大值,在区间(0,1)内取得极小值,
∴f′(x)=x2+ax+b=0在(-1,0)和(0,1)内各有一个根,
f′(0)<0,f′(-1)>0,f′(1)>0
即
|
在aOb坐标系中画出其表示的区域,如图,
∵A(0,-1),B(1,0),C(-1,0),
∴把A(0,-1)代入
a+2b+4 |
a+2 |
0?2+4 |
0+2 |
把B(1,0)代入
a+2b+4 |
a+2 |
1+0+4 |
1+2 |
5 |
3 |
把C(-1,0)代入
a+2b+4 |
a+2 |
?1+0+4 |
?1+2 |
∴
a+2b+4 |
a+2 |
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询