如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.

如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.(1)BD与CE相等吗?请说明理由.(2)你能求出BD与CE的... 如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.(1)BD与CE相等吗?请说明理由.(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DG之间的关系? 展开
 我来答
肺炎是飞扬摉
2015-02-01 · 超过62用户采纳过TA的回答
知道答主
回答量:115
采纳率:100%
帮助的人:116万
展开全部
⑴ BD=CE      
∵△ABC与△ADE都是等边三角形(已知)
∴AB= AC,AD=AE,∠BAC=∠D AE=60°
∴∠BA D =∠C AE         
在△BA D 和△C AE 中                                      
           AB=" AC"
∵ ∠BA D =∠C AE                        
AD=AE
∴ △BA D≌△C AE (边角边 )
∴BD=CE
⑵ 设BD与AC相交于点H
∵△BA D≌△C AE
∴∠A BD =∠A C E      
∵∠A BD+∠BAH+∠AHB=∠A C E+∠HF C+∠FHC=180°
又∵∠AHB=∠FHC
∴∠HF C= BAH=60°     
即BD与CE的夹角∠BFC为60°
⑶     BE=DG    BE⊥DG  

(1)根据等边三角形的性质得出AE=AD,再由∠EAD+∠DAC=∠BAC+∠DAC,得出∠DAB=∠EAC,利用SAS可证得△EAC≌△DAB,从而可得出结论.
(2)根据△EAC≌△DAB可得∠ECA=∠DAB,从而在△BFC中可得∠ECA+∠FBC=60°,结合∠ACB=60°,利用三角形的内角和定理可得出∠BFC的度数.
(3)证明与(1)相同。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式