已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EA

已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠EAB和∠ECD的角平分线... 已知直线AB∥CD,E为直线AB,CD外的一点,连接AE,EC.(1)E在直线AB的上方(如图1),求证:∠AEC+∠EAB=∠ECD;(2)∠EAB和∠ECD的角平分线交于点F(如图2),求证:∠AEC=2∠AFC;(3)若E在直线AB,CD之间,在(2)条件下,且∠AFC比∠AEC的32倍多20°,则∠AEC的度数为______.(不用写出解答过程) 展开
 我来答
圣域羔羊92hm
推荐于2016-10-24 · TA获得超过121个赞
知道答主
回答量:115
采纳率:0%
帮助的人:137万
展开全部

解:(1)如图1,
∵AB∥CD,
∴∠EBM=∠ECD,
∵∠AEC+∠EAB=∠EBM,
∴∠AEC+∠EAB=∠ECD;

(2)∵AF平分∠EAB,CF平分∠ECD,
∴∠ECD=2∠FCD,∠EAB=2∠FAM,
∵∠ECD=∠EBM=2∠FAM+∠AEC,∠FCD=∠FBM=∠AFC+∠FAM,
∴∠ECD=2∠FAM+∠AEC=2∠FAM+2∠AFC,
∴∠AEC=2∠AFC;

(3)
如图3,过E作EM∥AB,过F作FN∥AB,
∵AB∥CD,
∴ABB∥CD∥EM,FN∥AB∥CD
∴∠BAE+∠AEM=180°,∠ECD+∠MEC=180°,∠BAF=∠AFN,∠FCD=∠CFN,
∴∠EAB+∠ECD=360°-∠AEC,∠AFC=∠FAB+∠FCD,
∵AF平分∠EAB,CF平分∠ECD,
∴∠FAB=
1
2
∠EAB,∠FCD=
1
2
∠ECD,
∴∠AFC=180°-
1
2
∠AEC,
∵∠AFC比∠AEC的
3
2
倍多20°,
∴∠AFC=
3
2
∠AEC=20°=180°-
1
2
∠AEC,
解得:∠AEC=80°,
故答案为:80°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式