已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准

已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是254254.... 已知直线l与抛物线y2=8x交于A、B两点,且l经过抛物线的焦点F,A点的坐标为(8,8),则线段AB的中点到准线的距离是254254. 展开
 我来答
手机用户18470
推荐于2017-10-08 · 超过68用户采纳过TA的回答
知道答主
回答量:122
采纳率:33%
帮助的人:125万
展开全部
由y2=8x知2p=8,p=4.
设B点坐标为(xB,yB),由AB直线过焦点F,
∴直线AB方程为y=
4
3
(x-2),
把点B(xB,yB)代入上式得:
yB=
4
3
(xB-2)=
4
3
yB2
8
-2),
解得yB=-2,∴xB=
1
2

∴线段AB中点到准线的距离为
8+
1
2
2
+2=
25
4

故答案为
25
4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式