已知数列{an} 中,a1=2,an-an-1-2n=0(n≥2,n∈N).(1)写出a2、a3的值(只写结果)并求出数列{an}的

已知数列{an}中,a1=2,an-an-1-2n=0(n≥2,n∈N).(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;(2)设bn=1an+1+1a... 已知数列{an} 中,a1=2,an-an-1-2n=0(n≥2,n∈N).(1)写出a2、a3的值(只写结果)并求出数列{an}的通项公式;(2)设bn=1an+1+1an+2+1an+3+…+1a2n,求bn的最大值. 展开
 我来答
知道FD5e
2014-12-23 · 超过60用户采纳过TA的回答
知道答主
回答量:117
采纳率:100%
帮助的人:111万
展开全部
(1)∵a1=2,an-an-1-2n=0(n≥2,n∈N),
∴a2=6,a3=12.…(2分)
当n≥2时,an-an-1=2n,an-1-an-2=2(n-1),…,a3-a2=2×3,a2-a1=2×2,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-1+an-2)+(an-an-1
=2[1+2+3+…(n-1)+n]
=2×
n(n+1)
2
=n(n+1).…(5分)
当n=1时,a1=1×(1+1)=2也满足上式,…(6分)
∴数列{an}的通项公式为an=n(n+1).…(7分)
(2)bn
1
an+1
+
1
an+2
+…+
1
a2n

=
1
(n+1)(n+2)
+
1
(n+2)(n+3)
+…+
1
2n(2n+1)

=
1
(n+1)
?
1
(n+2)
+
1
(n+2)
?
1
(n+3)
+…+
1
2n
?
1
2n+1


=
1
(n+1)
?
1
(2n+1)

=
n
2n2+3n+1

=
1
(2n+
1
n
)+3
.…(10分)
令f(x)=2x+
1
x
(x≥1),
f(x)=2?
1
x2
,当x≥1时,f′(x)>0恒成立,
∴f(x)在x∈[1,+∞)上是增函数,故当x=1时,f(x)min=f(1)=3.…(13分)
即当n=1时,(bnmax=
1
6
.…(14分)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式