高中数学必修二中,圆的一般方程,Ax^2+By^2+Cx+Dy+E=0中,E是不是表示(C/2)^2+(D/2)^2?
4个回答
展开全部
不是,E代表一个常数,E求不出多少,这个方程只是一个模子,让你往里带数。
圆的一般方程应该是x^2+y^2+Dx+Ey+F=0(其中D、E、F都是常数)
整理得(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4
当D^2+E^2-4F>0时该方程表示以(-D/2,-E/2)为圆心、二分之根号D^2+E^2-4F为半径的圆
当D^2+E^2-4F=0时该方程表示为(-D/2,-E/2)的一个点
当D^2+E^2-4F<o时方程没有实解 因而他不表示任何图形
圆的一般方程应该是x^2+y^2+Dx+Ey+F=0(其中D、E、F都是常数)
整理得(x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4
当D^2+E^2-4F>0时该方程表示以(-D/2,-E/2)为圆心、二分之根号D^2+E^2-4F为半径的圆
当D^2+E^2-4F=0时该方程表示为(-D/2,-E/2)的一个点
当D^2+E^2-4F<o时方程没有实解 因而他不表示任何图形
展开全部
不是
圆的一般方程应该设为x^2+y^2+Cx+Dy+E=0
此时可化为(X+C/2)^2 +(Y+D/2)^2=(C/2)^2+(D/2)^2 + E
圆的一般方程应该设为x^2+y^2+Cx+Dy+E=0
此时可化为(X+C/2)^2 +(Y+D/2)^2=(C/2)^2+(D/2)^2 + E
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Ax^2+by^2+Cx+Dy+E=0应该是二元二次方程的通式,只有当A=B且不等于0时,该式才有可能是圆的方程。当A=B且不等于0时,你给的方程可转换为x^2+y^2+(C/A) x+(D/A) y+E/A=0,再进一步转换为(x+C/A)^2+(y+D/a)^2=(C^2+D^2-4*E)/4*A。此时可再讨论:设M=(C^2+D^2-4*E)/4*A,当M大于0时,方程表示以(-C/A、-D/A)为圆心,sqr M(M的平方根)为半径的圆;当M=0时,方程表示为(-C/A、-D/A)这点,当M小于0时,则方程不是实数方程。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
shang dui
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询