已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图
已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f...
已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2-x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.
展开
1个回答
展开全部
(I)函数f(x)的单调减区间(-∞,-1),函数f(x)的单调增区间[-1,0),(0,+∞);
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),
函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=-1,
当x<0时,(2x1+2)(2x2+2)=-1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,
∴x2-x1=
[-(2x1+2)+(2x2+2)]≥
=1,
∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2-x1≥1;
(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y-(x 12+2x1+a)=(2x1+2)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y-lnx2=
(x-x2);
两直线重合的充要条件是
,
由①及x1<0<x2得0<
<2,由①②得a=lnx2+(
?1)2-1=-ln
+
(
?2)2-1,
令t=
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),
函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=-1,
当x<0时,(2x1+2)(2x2+2)=-1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,
∴x2-x1=
1 |
2 |
[?(2x1+2)](2x2+2) |
∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2-x1≥1;
(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2,
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y-(x 12+2x1+a)=(2x1+2)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y-lnx2=
1 |
x2 |
两直线重合的充要条件是
|
由①及x1<0<x2得0<
1 |
x2 |
1 |
2x2 |
1 |
x2 |
1 |
4 |
1 |
x2 |
令t=
1 |