已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图

已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f... 已知函数f(x)=x2+2x+a,x<0lnx,x>0,其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(Ⅰ)指出函数f(x)的单调区间;(Ⅱ)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,证明:x2-x1≥1;(Ⅲ)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围. 展开
 我来答
晓至柠4824
2014-09-20 · 超过69用户采纳过TA的回答
知道答主
回答量:149
采纳率:50%
帮助的人:62.7万
展开全部
(I)函数f(x)的单调减区间(-∞,-1),函数f(x)的单调增区间[-1,0),(0,+∞);
(II)由导数的几何意义知,点A处的切线的斜率为f′(x1),点B处的切线的斜率为f′(x2),
函数f(x)的图象在点A,B处的切线互相垂直时,有f′(x1)f′(x2)=-1,
当x<0时,(2x1+2)(2x2+2)=-1,∵x1<x2<0,∴2x1+2<0,2x2+2>0,
∴x2-x1=
1
2
[-(2x1+2)+(2x2+2)]≥
[?(2x1+2)](2x2+2)
=1,
∴若函数f(x)的图象在点A,B处的切线互相垂直,有x2-x1≥1;
(III)当x1<x2<0,或0<x1<x2时,f′(x1)≠f′(x2),故x1<0<x2
当x1<0时,函数f(x)在点A(x1,f(x1))处的切线方程为y-(x 12+2x1+a)=(2x1+2)(x-x1);
当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为y-lnx2=
1
x2
(x-x2);
两直线重合的充要条件是
1
x2
=2x1+2   ①
lnx2?1=?
x
2
1
+a   ②

由①及x1<0<x2得0<
1
x2
<2,由①②得a=lnx2+(
1
2x2
?1
2-1=-ln
1
x2
+
1
4
1
x2
?2
2-1,
令t=
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消
1