如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连

如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求抛物线的解析... 如图所示,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线。(1)求抛物线的解析式;(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式; (3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由。 展开
 我来答
你猜5961
推荐于2016-12-03 · 超过65用户采纳过TA的回答
知道答主
回答量:129
采纳率:0%
帮助的人:62.1万
展开全部
解:(1)∵以AB为直径作⊙O′,交y轴的负半轴于点C,
∴∠OCA+∠OCB=90°,
又∵∠OCB+∠OBC=90°,
∴∠OCA=∠OBC,
又∵∠AOC= ∠COB=90°,
∴ΔAOC∽ ΔCOB,

又∵A(-1,0),B(9,0),

解得OC=3(负值舍去),
∴C(0,-3),
设抛物线解析式为y=a(x+1)(x-9),
∴-3=a(0+1)(0-9),
解得a=
∴二次函数的解析式为y= (x+1)(x-9),即y= x 2 - x-3;
(2)∵AB为O′的直径,且A(-1,0),B(9,0),
∴OO′=4,O′(4,0), 
∵点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,
∴∠BCD= ∠BCE= ×90°=45°,
连结O′D交BC于点M,则∠BO′D=2∠BCD=2×45°=90°,OO′=4,O′D= AB=5,
∴D(4,-5),
∴设直线BD的解析式为y=kx+b(k≠0)
 
解得
∴直线BD的解析式为y=x-9;
(3)假设在抛物线上存在点P,使得∠PDB=∠CBD,
设射线DP交⊙O′于点Q,则
分两种情况(如答案图1所示):
①∵O′(4,0),D(4,-5),B(9,0),C(0,-3),
∴把点C、D绕点O′逆时针旋转90°,使点D与点B重合,则点C与点Q 1 重合,
因此,点Q 1 (7,-4)符合
∵D(4,-5),Q 1 (7,-4),
∴用待定系数法可求出直线DQ 1 解析式为y= x-
解方程组
∴点P 1 坐标为( ),
[坐标为( )不符合题意,舍去],
②∵Q 1 (7,-4),
∴点Q 1 关于x轴对称的点的坐标为Q 2 (7,4)也符合
∵D(4,-5),Q 2 (7,4),
∴用待定系数法可求出直线DQ2解析式为y=3x-17,
解方程组
∴点P 2 坐标为(14,25),
[坐标为(3,-8)不符合题意,舍去],
∴符合条件的点P有两个:P 1 ),P 2 (14,25)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式