如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交
如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关...
如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4. (1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求 的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围.
展开
哈說與丶204
推荐于2016-12-01
·
TA获得超过278个赞
知道答主
回答量:134
采纳率:87%
帮助的人:59.5万
关注
解:(1)AP=PD。理由如下: 如图①,连接OP,OD, ∵OA是半圆C的直径,∴∠APO=90°,即OP⊥AD。 又∵OA=OD,∴AP=PD。 (2)如图①,连接PC、OD. ∵OD是半圆C的切线,∴∠AOD=90°。 由(1)知,AP=PD. 又∵AC=OC,∴PC∥OD。∴∠ACP=∠AOD=90°。 ∵OA=4,∴AC=2。 ∴ 的长= 。 (3)分两种情况: ①当点E落在OA上(即0<x≤ 时),如图②, 连接OP,则∠APO=∠AED. 又∵∠A=∠A,∴△APO∽△AED。∴ 。 ∵AP=x,AO=4,AD=2x,AE=4﹣y,∴ 。 ∴ (0<x≤ ). ②当点E落在线段OB上(即 <x<4)时,如图③, 连接OP,同①可得,△APO∽△AED。 ∴ 。 ∵AP=x,AO=4,AD=2x,AE=4+y,∴ 。 ∴ ( <x<4)。 综上所述,y与x之间的函数关系式为 |
试题分析:(1)AP=PD.理由如下:如图①,连接OP.利用圆周角定理知OP⊥AD.然后由等腰三角形“三合一”的性质证得AP=PD。 (2)由三角形中位线的定义证得CP是△AOD的中位线,则PC∥DO,所以根据平行线的性质、切线的性质易求弧AP所对的圆心角∠ACP=90°,从而求出 的长。 (3)分类讨论:点E落在线段OA和线段OB上,这两种情况下的y与x的关系式.这两种情况都是根据相似三角形(△APO∽△AED)的对应边成比例来求y与x之间的函数关系式。 |
收起
为你推荐: