如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交

如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4.(1)判断线段AP与PD的大小关... 如图①,AB是半圆O的直径,以OA为直径作半圆C,P是半圆C上的一个动点(P与点A,O不重合),AP的延长线交半圆O于点D,其中OA=4. (1)判断线段AP与PD的大小关系,并说明理由;(2)连接OD,当OD与半圆C相切时,求 的长;(3)过点D作DE⊥AB,垂足为E(如图②),设AP=x,OE=y,求y与x之间的函数关系式,并写出x的取值范围. 展开
 我来答
哈說與丶204
推荐于2016-12-01 · TA获得超过278个赞
知道答主
回答量:134
采纳率:87%
帮助的人:59.5万
展开全部
解:(1)AP=PD。理由如下:
如图①,连接OP,OD,

∵OA是半圆C的直径,∴∠APO=90°,即OP⊥AD。
又∵OA=OD,∴AP=PD。
(2)如图①,连接PC、OD.
∵OD是半圆C的切线,∴∠AOD=90°。
由(1)知,AP=PD.
又∵AC=OC,∴PC∥OD。∴∠ACP=∠AOD=90°。
∵OA=4,∴AC=2。
的长=
(3)分两种情况:
①当点E落在OA上(即0<x≤ 时),如图②,

连接OP,则∠APO=∠AED.
又∵∠A=∠A,∴△APO∽△AED。∴
∵AP=x,AO=4,AD=2x,AE=4﹣y,∴
(0<x≤ ).
②当点E落在线段OB上(即 <x<4)时,如图③,

连接OP,同①可得,△APO∽△AED。

∵AP=x,AO=4,AD=2x,AE=4+y,∴
<x<4)。
综上所述,y与x之间的函数关系式为


试题分析:(1)AP=PD.理由如下:如图①,连接OP.利用圆周角定理知OP⊥AD.然后由等腰三角形“三合一”的性质证得AP=PD。
(2)由三角形中位线的定义证得CP是△AOD的中位线,则PC∥DO,所以根据平行线的性质、切线的性质易求弧AP所对的圆心角∠ACP=90°,从而求出 的长。
(3)分类讨论:点E落在线段OA和线段OB上,这两种情况下的y与x的关系式.这两种情况都是根据相似三角形(△APO∽△AED)的对应边成比例来求y与x之间的函数关系式。 
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式