已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y轴正半轴于点Q(如图).(1)
已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y轴正半轴于点Q(如图).(1)试证明:AP=PQ;(2)设点P的横坐标为a,点Q的纵坐...
已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y轴正半轴于点Q(如图).(1)试证明:AP=PQ;(2)设点P的横坐标为a,点Q的纵坐标为b,那么b关于a的函数关系式是______;(3)当S△AOQ=23S△APQ时,求点P的坐标.
展开
1个回答
展开全部
解:(1)过P作x轴、y轴的垂线,垂足分别为H、T
∵点P在函数y=x(x>0)的图象上,
∴PH=PT,PH⊥PT.(1分)
∵AP⊥PQ,
∴∠APH=∠QPT.
又∠PHA=∠PTQ,
∴△PHA≌△PTQ,(1分)
∴AP=PQ. (1分)
(2)根据题意得 AH=2-a=TQ.
∵OQ+TQ=OT=OH,
∴b+2-a=a,
b=2a-2.
故答案为 b=2a-2.(2分)
(3)由(1)、(2)知,
S△AOQ=
OA×OQ=2a?2,S△APQ=
AP2=a2?2a+2,(1分)
∴2a?2=
(a2?2a+2),
解得 a=
,(1分)
所以点P的坐标是(
,
)或(
,
).(1分)
∵点P在函数y=x(x>0)的图象上,
∴PH=PT,PH⊥PT.(1分)
∵AP⊥PQ,
∴∠APH=∠QPT.
又∠PHA=∠PTQ,
∴△PHA≌△PTQ,(1分)
∴AP=PQ. (1分)
(2)根据题意得 AH=2-a=TQ.
∵OQ+TQ=OT=OH,
∴b+2-a=a,
b=2a-2.
故答案为 b=2a-2.(2分)
(3)由(1)、(2)知,
S△AOQ=
1 |
2 |
1 |
2 |
∴2a?2=
2 |
3 |
解得 a=
5±
| ||
2 |
所以点P的坐标是(
5?
| ||
2 |
5?
| ||
2 |
5+
| ||
2 |
5+
| ||
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询