(2013?嘉定区一模)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+4ax+c(a≠0)经过A(0,4),B(-
(2013?嘉定区一模)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+4ax+c(a≠0)经过A(0,4),B(-3,1),顶点为C.(1)求该抛物线的表达方式...
(2013?嘉定区一模)在平面直角坐标系xOy中(如图),已知抛物线y=ax2+4ax+c(a≠0)经过A(0,4),B(-3,1),顶点为C.(1)求该抛物线的表达方式及点C的坐标;(2)将(1)中求得的抛物线沿y轴向上平移m(m>0)个单位,所得新抛物线与y轴的交点记为点D.当△ACD时等腰三角形时,求点D的坐标;(3)若点P在(1)中求得的抛物线的对称轴上,联结PO,将线段PO绕点P逆时针转90°得到线段PO′,若点O′恰好落在(1)中求得的抛物线上,求点P的坐标.
展开
1个回答
展开全部
解答:解:(1)将A,B坐标分别代入抛物线解析式得:
,
解得:
,
∴抛物线解析式为y=x2+4x+4=(x+2)2,
∴顶点C坐标为(-2,0);
(2)由题意得:D(0,m+4),
在Rt△AOC中,OA=4,OC=2,
根据勾股定理得:AC=
=2
,
由图形得到∠DAC为钝角,要使△ACD为等腰三角形,只有DA=AC=2
,
∴DA=m=2
,
则D坐标为(0,2
+4);
(3)设P(-2,n),如图所示,过O′作O′M⊥x轴,交x轴于点M,过P作PN⊥O′M,垂足为N,
易得PO=PO′,∠PCO=∠PNO′=90°,∠CPO=∠NPO′,
∴△PCO≌△PNO′(AAS),
∴O′N=OC=2,PN=PC=|n|,
∵四边形PCMN为矩形,
∴MN=PC=|n|,
①当n>0时,O′(n-2,n+2),代入抛物线解析式得:n2-n-2=0,
解得:n=2或n=-1(舍去);
②当n<0时,O′(n-2,n+2),代入抛物线解析式得:n2-n-2=0,
解得:n=2(舍去)或n=-1,
综上①②得到n=2或-1,
则P的坐标为(-2,2),(-2,-1).
|
解得:
|
∴抛物线解析式为y=x2+4x+4=(x+2)2,
∴顶点C坐标为(-2,0);
(2)由题意得:D(0,m+4),
在Rt△AOC中,OA=4,OC=2,
根据勾股定理得:AC=
OA2+OC2 |
5 |
由图形得到∠DAC为钝角,要使△ACD为等腰三角形,只有DA=AC=2
5 |
∴DA=m=2
5 |
则D坐标为(0,2
5 |
(3)设P(-2,n),如图所示,过O′作O′M⊥x轴,交x轴于点M,过P作PN⊥O′M,垂足为N,
易得PO=PO′,∠PCO=∠PNO′=90°,∠CPO=∠NPO′,
∴△PCO≌△PNO′(AAS),
∴O′N=OC=2,PN=PC=|n|,
∵四边形PCMN为矩形,
∴MN=PC=|n|,
①当n>0时,O′(n-2,n+2),代入抛物线解析式得:n2-n-2=0,
解得:n=2或n=-1(舍去);
②当n<0时,O′(n-2,n+2),代入抛物线解析式得:n2-n-2=0,
解得:n=2(舍去)或n=-1,
综上①②得到n=2或-1,
则P的坐标为(-2,2),(-2,-1).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询