一道定积分和一道不定积分的题目,大神求解,过程写清楚点,谢谢了
5个回答
展开全部
1. 因为sin^5x为奇函数,因此在(-1,1)的积分为0
原式=∫(-1,1)cos^5 xdx
=2∫(0, 1) cos^4x cosxdx
=2∫(0,1)(1-sin²x)²d(sinx)
=2∫(0,1) (1-2sin²x+sin^4 x)d(sinx)
=2[sinx-2/3sin³x+1/5sin^5 x](0,1)
=2[sin1-2/3sin³1+1/5sin^5 1]
2. 令x=t², t>=0
则dx=2tdt
原式=∫t²*2tdt/(1+t)
=2∫t³dt/(1+t)
=2∫(t³+1-1)dt/(1+t)
=2[t²-t+1-1/(1+t)]dt
=2[t³/3-t²/2+t-ln(1+t)]+C
=2[x√x/3-x/2+√x-ln(1+√x)]+C
原式=∫(-1,1)cos^5 xdx
=2∫(0, 1) cos^4x cosxdx
=2∫(0,1)(1-sin²x)²d(sinx)
=2∫(0,1) (1-2sin²x+sin^4 x)d(sinx)
=2[sinx-2/3sin³x+1/5sin^5 x](0,1)
=2[sin1-2/3sin³1+1/5sin^5 1]
2. 令x=t², t>=0
则dx=2tdt
原式=∫t²*2tdt/(1+t)
=2∫t³dt/(1+t)
=2∫(t³+1-1)dt/(1+t)
=2[t²-t+1-1/(1+t)]dt
=2[t³/3-t²/2+t-ln(1+t)]+C
=2[x√x/3-x/2+√x-ln(1+√x)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)
∫(-1->1) [(sinx)^5 + (cosx)^5 ]dx ( (sinx)^5: odd function)
=∫(-1->1) (cosx)^5 dx
=2∫(0->1) (cosx)^5 dx ( (cosx)^5 :even function )
=2∫(0->1) (1-(sinx)^2)^2 dsinx
=2∫(0->1) [ 1-4(sinx)^2 +6(sinx)^4-4(sinx)^6+ (sinx)^8 ] dsinx
=2[ sinx -(4/3)(sinx)^3 +(6/5)(sinx)^5-(4/7)(sinx)^7+ (1/8)(sinx)^9 ] |(0->1)
=2[ sin1 -(4/3)(sin1)^3 +(6/5)(sin1)^5-(4/7)(sin1)^7+ (1/8)(sin1)^9 ]
(2)
∫x/(1+√x) dx
let
√x = (tany)^2
[1/(2√x)] dx = 2tany (secy)^2 dy
dx = 4(tany)^3.(secy)^2 dy
∫x/(1+√x) dx
=4∫ (tany)^7 dy
=-4∫ { [1- (cosy)^2]^3/(cosy)^7 } dcosy
=-4∫ { [1- 3(cosy)^2+ 3(cosy)^4 - (cosy)^6 ]/(cosy)^7 } dcosy
=-4{ -1/[6(cosy)^6] + 3/[4(cosy)^4] - 3/[2(cosy)^2] + ln|cosy| } + C
=(2/3)(1+√x)^3 -3(1+√x)^2 - 6(1+√x)^2 +2ln|1+√x| + C
∫(-1->1) [(sinx)^5 + (cosx)^5 ]dx ( (sinx)^5: odd function)
=∫(-1->1) (cosx)^5 dx
=2∫(0->1) (cosx)^5 dx ( (cosx)^5 :even function )
=2∫(0->1) (1-(sinx)^2)^2 dsinx
=2∫(0->1) [ 1-4(sinx)^2 +6(sinx)^4-4(sinx)^6+ (sinx)^8 ] dsinx
=2[ sinx -(4/3)(sinx)^3 +(6/5)(sinx)^5-(4/7)(sinx)^7+ (1/8)(sinx)^9 ] |(0->1)
=2[ sin1 -(4/3)(sin1)^3 +(6/5)(sin1)^5-(4/7)(sin1)^7+ (1/8)(sin1)^9 ]
(2)
∫x/(1+√x) dx
let
√x = (tany)^2
[1/(2√x)] dx = 2tany (secy)^2 dy
dx = 4(tany)^3.(secy)^2 dy
∫x/(1+√x) dx
=4∫ (tany)^7 dy
=-4∫ { [1- (cosy)^2]^3/(cosy)^7 } dcosy
=-4∫ { [1- 3(cosy)^2+ 3(cosy)^4 - (cosy)^6 ]/(cosy)^7 } dcosy
=-4{ -1/[6(cosy)^6] + 3/[4(cosy)^4] - 3/[2(cosy)^2] + ln|cosy| } + C
=(2/3)(1+√x)^3 -3(1+√x)^2 - 6(1+√x)^2 +2ln|1+√x| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询