初二数学题,求解
1个回答
展开全部
解:(1)∵△ABE是等边三角形,
∴BA=BE,∠ABE=60°,
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN,
即∠BMA=∠NBE,
又∵MB=NB,
∴△AMB≌△ENB(SAS);
(2)①当M点落在BD的中点时,AM+CM的值最小;
②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,
理由如下:连接MN,
由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形,
∴BM=MN,
∴AM+BM+CM=EN+MN+CM,
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
∴BA=BE,∠ABE=60°,
∵∠MBN=60°,
∴∠MBN-∠ABN=∠ABE-∠ABN,
即∠BMA=∠NBE,
又∵MB=NB,
∴△AMB≌△ENB(SAS);
(2)①当M点落在BD的中点时,AM+CM的值最小;
②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小,
理由如下:连接MN,
由(1)知,△AMB≌△ENB,
∴AM=EN,
∵∠MBN=60°,MB=NB,
∴△BMN是等边三角形,
∴BM=MN,
∴AM+BM+CM=EN+MN+CM,
根据“两点之间线段最短”,得EN+MN+CM=EC最短
∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询