洛必达法则求极限:x趋向于0, lim(sin x/x)的1/x²次幂
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
J(x) = [(sinx)/x]^(1/x^2)
lim(x->0) lnJ(x) = lim(x->0) ln[(sinx)/x] / x^2
= lim(x->0)(xcosx - sinx)/(2x^2sinx)
= lim(x->0) (cosx-xsinx-cosx) / 2(2xsinx+x^2cosx)
= 0.5 lim(x->0) -sinx / (2sinx+xcosx)
= -0.5 lim(x->0) cosx /(2cosx+cosx-xsinx)
= -0.5 (1/3)
= - 1/6 //: lnJ=-1/6
因此:lim(x->) [(sinx)/x]^(1/x^2) = e^(-1/6)
lim(x->0) lnJ(x) = lim(x->0) ln[(sinx)/x] / x^2
= lim(x->0)(xcosx - sinx)/(2x^2sinx)
= lim(x->0) (cosx-xsinx-cosx) / 2(2xsinx+x^2cosx)
= 0.5 lim(x->0) -sinx / (2sinx+xcosx)
= -0.5 lim(x->0) cosx /(2cosx+cosx-xsinx)
= -0.5 (1/3)
= - 1/6 //: lnJ=-1/6
因此:lim(x->) [(sinx)/x]^(1/x^2) = e^(-1/6)
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询