已知数列{a n }的前n项和为S n ,a 1 =1,a n+1 = 1 3 S n (n∈N * ).(1)求a 2 ,a 3 ,
已知数列{an}的前n项和为Sn,a1=1,an+1=13Sn(n∈N*).(1)求a2,a3,a4的值;(2)求数列{an}的通项公式....
已知数列{a n }的前n项和为S n ,a 1 =1,a n+1 = 1 3 S n (n∈N * ).(1)求a 2 ,a 3 ,a 4 的值;(2)求数列{a n }的通项公式.
展开
於牧vq
推荐于2016-02-19
·
超过76用户采纳过TA的回答
关注
(1)∵a n+1 = S n , ∴ a 2 = S 1 = a 1 = , ∴ a 3 = S 2 = ( a 1 + a 2 )= (1+ ) = , ∴ a 4 = S 3 = ( a 1 + a 2 + a 3 ) = (1+ + ) = ; (2)∵a n+1 = S n ,∴ a n = S n-1 (n≥2) , 两式相减得: a n+1 - a n = ( S n - S n-1 ) = a n , ∴ a n+1 = a n (n≥2) , ∴数列{a n }从第2项起,以后各项成等比数列, a n = ×( ) n-2 (n≥2) , 故数列{a n }的通项公式为 a n = . |
收起
为你推荐: