如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数
1个回答
展开全部
解答:解:解法一:过C点作CF∥AB,
则∠1=∠ACF=35°(两直线平行,内错角相等),
∵AB∥ED,CF∥AB(已知),
∴CF∥ED(平行于同一直线的两直线平行)
∴∠FCD=180°-∠2=180°-80°=100°(两直线平行,同旁内角内角互补)
∴∠ACD=∠ACF+∠FCD=35°+100°=135°;
解法二:延长DC交AB于F
∵AB∥ED(已知),
∴∠BFC=∠2=80°(两直线平行,内错角相等),
∵∠ACF=∠BFC-∠1=80°-35°=45°
(三角形一个外角等于它不相邻的两个内角的和)
∴∠ACD=180°-∠ACF=180°-45°=135°(1平角=180°).
解法三:延长AC、ED交于F
∵AB∥ED,∴∠DFC=∠1=35°
∵∠CDF=180°-∠2=180°-80°=100°
∴∠ACD=∠CDF+∠DFC=100°+35°=135°.
则∠1=∠ACF=35°(两直线平行,内错角相等),
∵AB∥ED,CF∥AB(已知),
∴CF∥ED(平行于同一直线的两直线平行)
∴∠FCD=180°-∠2=180°-80°=100°(两直线平行,同旁内角内角互补)
∴∠ACD=∠ACF+∠FCD=35°+100°=135°;
解法二:延长DC交AB于F
∵AB∥ED(已知),
∴∠BFC=∠2=80°(两直线平行,内错角相等),
∵∠ACF=∠BFC-∠1=80°-35°=45°
(三角形一个外角等于它不相邻的两个内角的和)
∴∠ACD=180°-∠ACF=180°-45°=135°(1平角=180°).
解法三:延长AC、ED交于F
∵AB∥ED,∴∠DFC=∠1=35°
∵∠CDF=180°-∠2=180°-80°=100°
∴∠ACD=∠CDF+∠DFC=100°+35°=135°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询