高等数学问题,f(x)=x^k sin1/x (x≠0),0(x=0) ,f(x)在R上可导,求k 10

高等数学问题,f(x)=x^ksin1/x(x≠0),0(x=0),f(x)在R上可导,求k的范围。我要追问的... 高等数学问题,f(x)=x^k sin1/x (x≠0),0(x=0) ,f(x)在R上可导,求k的范围。我要追问的 展开
 我来答
crs0723
推荐于2018-03-08 · TA获得超过2.5万个赞
知道大有可为答主
回答量:1.6万
采纳率:85%
帮助的人:4615万
展开全部
当x≠0时,因为f(x)=x^k*sin(1/x)是初等函数,所以f(x)在x≠0上是可导的
要使f(x)在R上可导,则需满足以下条件:
(1)f(x)在x=0上连续
即lim(x->0)f(x)=f(0)
lim(x->0)f(x)=lim(x->0)x^k*sin(1/x)=f(0)=0
因为当x->0时,sin(1/x)是有界的发散量,所以x^k必须是无穷小量
所以k>0
(2)f(x)在x=0上可导
即f'(0)存在
f'(0)=lim(x->0)[f(x)-f(0)]/(x-0)
=lim(x->0)[x^k*sin(1/x)]/x
=lim(x->0)x^(k-1)*sin(1/x)
因为当x->0时,sin(1/x)是有界的发散量,所以x^(k-1)必须是无穷小量
所以k>1
综上所述,k>1
茹翊神谕者

2020-10-19 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25129

向TA提问 私信TA
展开全部

详情如图所示

有任何疑惑,欢迎追问

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式