高数微积分题目
1个回答
展开全部
令t=√(1+lnx),则x=e^(t^2-1),dx=e^(t^2-1)*2tdt
原式=∫(1,2) [e^(t^2-1)*2tdt]/[e^(t^2-1)*t]
=∫(1,2) 2dt
=2t|(1,2)
=4-2
=2
令x=tant,dx=sec^2tdt
原式=∫(π/4,arctan(√5)) (sec^2tdt)/(tan^2t*sect)
=∫(π/4,arctan(√5)) cost/sin^2tdt
=∫(π/4,arctan(√5)) 1/sin^2td(sint)
=-1/sint|(π/4,arctan(√5))
=-csct|(π/4,arctan(√5))
=-√6/√5+√2
=√2-√30/5
原式=∫(1,2) [e^(t^2-1)*2tdt]/[e^(t^2-1)*t]
=∫(1,2) 2dt
=2t|(1,2)
=4-2
=2
令x=tant,dx=sec^2tdt
原式=∫(π/4,arctan(√5)) (sec^2tdt)/(tan^2t*sect)
=∫(π/4,arctan(√5)) cost/sin^2tdt
=∫(π/4,arctan(√5)) 1/sin^2td(sint)
=-1/sint|(π/4,arctan(√5))
=-csct|(π/4,arctan(√5))
=-√6/√5+√2
=√2-√30/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询