怎样理解充分条件,必要条件和充要条件
如果A能推出B,那么A就是B的充分条件。其中A为B的子集,即属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。
必要条件是数学中的一种关系形式。如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件,记作B→A,读作“B含于A”。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。
充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,而且也能从命题q推出命题p ,则称p是q的充分必要条件,且q也是p的充分必要条件。
如果有事物情况A,则必然有事物情况B;如果有事物情况B,则必然有事物情况A,那么B就是A的充分必要条件 ( 简称:充要条件 ),反之亦然 。
扩展资料:
一、充分条件举例
1、A=“下雨”;B=“地面湿润”。
2、A=“烧柴”;B=“会产生CO2”。
例子中A都是B的充分条件,确切地说,A是B的充分而不必要的条件:其一、A必然导致B;其二,A不是B发生必需的。在例子中,下雨会导致地面湿润,但地面湿润不一定是由下雨导致的,可能是由于泼水导致的。
烧柴一定会产生CO2,但产生CO2可能为燃烧甲醇等。这些说明A不是B发生必需的。所以A是B的充分条件,也是不必要条件,即充分不必要条件。
二、必要条件举例
1、A=“地面潮湿”;B=“下雨了”。
2、A=“认识26个字母”;B=“能看懂英文”。
3、A=“听过京剧”;B=“能体会到京剧的美”。
在例子中,地面潮湿不一定就是下雨了;认识了26个字母不一定就能看懂英文;听过京剧未必能体会到京剧的美,这说明A不必然导致B。
三、充要条件举例
1、A=“三角形等边”;B=“三角形等角”。
2、A=“某人触犯了法律”;B=“应当依照刑法对他处以刑罚”。
3、A=“付了足够的钱”;B=“能买到商店里的东西”。
例1中A是B的充分必要条件。
例2中A是B的必要不充分条件;(A触犯法律包含各种法,有刑法有民法;B已经确定是刑法。B属于A所以A是B的必要不充分条件)。
例3中A是B的必要不充分条件;( A付够了钱 可以买的是车 房子等;但是B能买到超市里的东西一定是要付够钱)。
参考资料来源:百度百科-充分必要条件
参考资料来源:百度百科-充分条件
参考资料来源:百度百科-必要条件
2018-06-11 广告
如 只要天下雨,地就会湿。
有“下雨”这个条件就一定有“地湿”这个结果,但“地湿”这个结果不一定就是“天下雨”造成的,也许还可能有其他的条件原因,如洒水车洒的、别人喷的等等。
必要条件:有甲这个条件不一定能推出乙这个结果,但乙这个结果一定要 有甲这个条件。关联词是 只有……才……
如 只有阳光充足,菜才能长得好。 有“阳光充足”这个条件“菜”不一定就长得好,还需要施肥、浇水等其他条件。但“菜”要长得好一定要有“阳光充足”这个条件。
充分必要条件:也称充要条件,一种数学概念