高中数学导数问题,证明如下问题

 我来答
supersarah
2016-04-03 · TA获得超过7149个赞
知道大有可为答主
回答量:2623
采纳率:80%
帮助的人:1192万
展开全部
f'(x) = 2/x - 2/x^3 + 2/x^2 = 2/x(1+1/x-1/x^2)
1/2 < x < 1 时, 1/x > 1/x^2, f'(x) > 0
导数恒正倒是成立的....

f(1/2) = 1 + ln(1/4) + 4 - 4 = 1 - ln4 < 0
而 f(x) 在定义域内, 包括 x=1/2 时连续.....
所以,存在 ε 使得 f(1/2+ε) - f(1/2) < |f(1/2)|/2 = -f(1/2)/2
f(1/2+ε) < f(1/2)/2 < 0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hutj246
2016-04-03 · TA获得超过1387个赞
知道大有可为答主
回答量:2293
采纳率:0%
帮助的人:2843万
展开全部

追问
我求出极值点太复杂就没代
追答
喔,下次试试
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱之于恋
2016-04-03
知道答主
回答量:9
采纳率:0%
帮助的人:9841
展开全部
f(x)大于0对于x属于(1/2,1)恒成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
rivermist
2016-04-03 · TA获得超过464个赞
知道小有建树答主
回答量:286
采纳率:42%
帮助的人:93.3万
展开全部
你题没写完整吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式