matlab画出的曲线怎么拟合函数
展开全部
一、 单一变量的曲线逼近
Matlab有一个功能强大的曲线拟合工具箱
cftool ,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908
280.0447
296.204 311.5475]
》y=[5 10 15 20 25 30 35 40 45 50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting
tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set
name”,然
后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data
set”下拉菜单
选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
Custom
Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) +
c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) +
b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic
spline、shape-
preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree
~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic
~、4-5th
degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x +
c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选Custom
Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear
Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General
Equations”标签,输入函
数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“
Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变
量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。
Matlab有一个功能强大的曲线拟合工具箱
cftool ,使用方便,能实现多种类型的线性、非线
性曲线拟合。下面结合我使用的 Matlab R2007b 来简单介绍如何使用这个工具箱。
假设我们要拟合的函数形式是 y=A*x*x + B*x, 且A>0,B>0 。
1、在命令行输入数据:
》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908
280.0447
296.204 311.5475]
》y=[5 10 15 20 25 30 35 40 45 50]
2、启动曲线拟合工具箱
》cftool
3、进入曲线拟合工具箱界面“Curve Fitting
tool”
(1)点击“Data”按钮,弹出“Data”窗口;
(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set
name”,然
后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数
据集的曲线图;
(3)点击“Fitting”按钮,弹出“Fitting”窗口;
(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data
set”下拉菜单
选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类
型有:
Custom
Equations:用户自定义的函数类型
Exponential:指数逼近,有2种类型, a*exp(b*x) 、 a*exp(b*x) +
c*exp(d*x)
Fourier:傅立叶逼近,有7种类型,基础型是 a0 + a1*cos(x*w) +
b1*sin(x*w)
Gaussian:高斯逼近,有8种类型,基础型是 a1*exp(-((x-b1)/c1)^2)
Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic
spline、shape-
preserving
Polynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree
~
Power:幂逼近,有2种类型,a*x^b 、a*x^b + c
Rational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic
~、4-5th
degree ~;此外,分子还包括constant型
Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)
Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是 a1*sin(b1*x +
c1)
Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)
选择好所需的拟合曲线类型及其子类型,并进行相关设置:
——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改
待估计参数的上下限等参数;
——如果选Custom
Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear
Equations线性等式”和“General Equations构造等式”两种标签。
在本例中选Custom Equations,点击“New”按钮,选择“General
Equations”标签,输入函
数类型y=a*x*x + b*x,设置参数a、b的上下限,然后点击OK。
(5)类型设置完成后,点击“Apply”按钮,就可以在Results框中得到拟合结果,如下例:
general model:
f(x) = a*x*x+b*x
Coefficients (with 95% confidence bounds):
a = 0.009194 (0.009019, 0.00937)
b = 1.78e-011 (fixed at bound)
Goodness of fit:
SSE: 6.146
R-square: 0.997
Adjusted R-square: 0.997
RMSE: 0.8263
同时,也会在工具箱窗口中显示拟合曲线。
这样,就完成一次曲线拟合啦,十分方便快捷。当然,如果你觉得拟合效果不好,还可以在“
Fitting”窗口点击“New fit”按钮,按照步骤(4)~(5)进行一次新的拟合。
不过,需要注意的是,cftool 工具箱只能进行单个变量的曲线拟合,即待拟合的公式中,变
量只能有一个。对于混合型的曲线,例如 y = a*x + b/x ,工具箱的拟合效果并不好。
展开全部
拟合步骤:
1、求(获)得一系列x,y对应值
x=[...]
y=[...]
2、根据画出的曲线,,设定拟合函数
fun=inline('a(1)+a(2)*exp(a(3)*x','a','x')
3、初定x0的初值
x0=[0 0 0]
4、用拟合函数求出拟合系数
a=lsqcurvefit(fun,x0,x,y) 或 a= nlinfit(x,y,fun,x0)
用cftool的结果与实际是有较大的误差。你不仿用二种获得的拟合函数,将已知值x代人,得到的yi,那个更接近已知值y。
一般用cftool工具箱,来判断拟合函数可能的形式。
1、求(获)得一系列x,y对应值
x=[...]
y=[...]
2、根据画出的曲线,,设定拟合函数
fun=inline('a(1)+a(2)*exp(a(3)*x','a','x')
3、初定x0的初值
x0=[0 0 0]
4、用拟合函数求出拟合系数
a=lsqcurvefit(fun,x0,x,y) 或 a= nlinfit(x,y,fun,x0)
用cftool的结果与实际是有较大的误差。你不仿用二种获得的拟合函数,将已知值x代人,得到的yi,那个更接近已知值y。
一般用cftool工具箱,来判断拟合函数可能的形式。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询