如图① 点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB

如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD(1)求∠AEB的大小:(2如图2,△OAB固定不动... 如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD
(1)求∠AEB的大小:
(2 如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小
展开
 我来答
小肥肥灬
2013-10-09 · TA获得超过433个赞
知道答主
回答量:51
采纳率:0%
帮助的人:13.9万
展开全部
(1)解:∵△DCO和△ABO是等边三角形,
∴OC=OD,OB=OA,∠OBA=∠OAB=60°,∠COD=∠BOA=60°,
∴∠COD+∠COB=∠BOA+∠COB,
∴∠DOB=∠COA,
在△DOB和△COA中

OD=OC
∠DOB=∠COA
OB=OA

∴△DOB≌△COA(SAS),
∴∠DBO=∠CAO,
∵∠OBA=∠OAB=60°
∴∠AEB=180°-(∠EBO+∠OBA+∠BAO)
=180°-(∠CAO+∠OBA+∠BAO)
=180°-(60°+60°)=60°;
(2)解:与(1)证明过程类似,
∵△DCO和△ABO是等边三角形,
∴OC=OD,OB=OA,∠OBA=∠OAB=60°,∠COD=∠BOA=60°,
∴∠COD+∠COB=∠BOA+∠COB,
∴∠DOB=∠COA,
在△DOB和△COA中

OD=OC
∠DOB=∠COA
OB=OA

∴△DOB≌△COA(SAS),
∴∠DBO=∠CAO,
∵∠OBA=∠OAB=60°
∴∠AEB=180°-(∠EBO+∠OBA+∠BAE)
=180°-(∠CAO+∠OBA+∠BAE)
=180°-(60°+60°)=60°.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
科颐维
2024-10-28 广告
作为上海科颐维电子科技有限公司的工作人员,我简要介绍电商平台射线管的原理及结构:电商平台射线管是一种真空二极管,其核心原理是利用高速电子撞击金属靶面产生电商平台射线。其结构主要包括阳极和阴极,阳极用于接受电子轰击并产生电商平台射线,通常由靶... 点击进入详情页
本回答由科颐维提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式