高中数学三角函数
①A、B、C为三角形内角,满足(sinA)²+(sinB)²+(sinC)²<1,求三角形形状与特征②求sin9°+sin49°+sin89...
①A、B、C为三角形内角,满足(sinA)²+(sinB)²+(sinC)²<1,求三角形形状与特征
②求sin9°+sin49°+sin89°+sin129°+……+sin329°的值 展开
②求sin9°+sin49°+sin89°+sin129°+……+sin329°的值 展开
2个回答
展开全部
(1)钝角三角形,证明还没想到
(2)0
和差化积很重要,sina+sinb=2sin[(a+b)/2]cos[(a-b)/2],
sin9°+sin49°+sin89°+sin129°+……+sin329°
= (sin9°+sin329°)+(sin49°+sin289度)+(sin89°+sin249度)+(sin129°+……)
=2sin338度*cos160度+2sin338度*cos120度+2sin338度*cos60度+2sin338度*cos20度
=2sin338度*(cos160度+cos120度+cos60度+cos20度)
=0
(2)0
和差化积很重要,sina+sinb=2sin[(a+b)/2]cos[(a-b)/2],
sin9°+sin49°+sin89°+sin129°+……+sin329°
= (sin9°+sin329°)+(sin49°+sin289度)+(sin89°+sin249度)+(sin129°+……)
=2sin338度*cos160度+2sin338度*cos120度+2sin338度*cos60度+2sin338度*cos20度
=2sin338度*(cos160度+cos120度+cos60度+cos20度)
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询