高数,计算曲面积分的一道题,谢谢啦~
1个回答
展开全部
令Dyz是曲面∑在yoz平面的投影,即{(y,z)|y^2+z^2<=4}
dx/dy=-2y,dx/dz=-2z
原式=∫∫(Dyz) (y^2+z^2)*√(1+4y^2+4z^2)dydz
=∫(0,2π)dθ∫(0,2)r^3*√(1+4r^2)dr
=2π*∫(0,2)r^3*√(1+4r^2)dr
令r=tant/2,则dr=sec^2t/2dt
原式=(π/16)*∫(0,arctan4) tan^3t*sec^3tdt
=(π/16)*∫(0,arctan4) (sec^2t-1)*sec^2t*d(sect)
=(π/16)*∫(0,arctan4) (sec^4t-sec^2t)d(sect)
=(π/16)*[(1/5)*sec^5t-(1/3)*sec^3t]|(0,arctan4)
=(π/16)*[(782/15)*√17+2/15]
=(π/120)*(391√17+1)
dx/dy=-2y,dx/dz=-2z
原式=∫∫(Dyz) (y^2+z^2)*√(1+4y^2+4z^2)dydz
=∫(0,2π)dθ∫(0,2)r^3*√(1+4r^2)dr
=2π*∫(0,2)r^3*√(1+4r^2)dr
令r=tant/2,则dr=sec^2t/2dt
原式=(π/16)*∫(0,arctan4) tan^3t*sec^3tdt
=(π/16)*∫(0,arctan4) (sec^2t-1)*sec^2t*d(sect)
=(π/16)*∫(0,arctan4) (sec^4t-sec^2t)d(sect)
=(π/16)*[(1/5)*sec^5t-(1/3)*sec^3t]|(0,arctan4)
=(π/16)*[(782/15)*√17+2/15]
=(π/120)*(391√17+1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |