如图,矩形ABCD中,AB = 8,BC = 10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为... 如图,矩形ABCD中,AB = 8,BC = 10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP = x,△ADP和矩形重叠部分(阴影)的面积为y
(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上?这时重叠部分的面积y等于多少?
展开
菟丝子大虾
推荐于2016-12-01 · TA获得超过533个赞
知道答主
回答量:97
采纳率:0%
帮助的人:61.8万
展开全部
有意思,让我又有了回到初中时代的感觉。下面是解答过程:
(1)从丁图中可以看出,DP =8, 阴影部分的面积y= 1/2( EC*AB)设EC为z,你现在就是要用一个方程解出z。在△ABE中BE=10-z, AE=z(任何一个长方形艳对角线对折得出的阴影部分的三角形是等腰△)。在△ABE中用勾股定理8^2+(10-z)^2 =z^2, 解出z=8.2 所以阴影面积y=1/2( EC*AB)=32.8
(2)从图中可以看出y=1/2(x*AD)而AD=10,所以你的任务就是求出x是多少
你可以把x放到△D’PC中用勾股定理求,而D’C你又要通过△ABD’求,接下来是求解过程。
在△ABD’中用勾股定理BD’^2=10^2-8^2,解出BD’=6,进而得出D’C=10-6=4
在 △D’PC中x^2=(8-x)^2+4^2 解得x=5 y=1/2(x*AD)=25
所以当p点运动到DP=5时,D点恰好落到BC上,此时阴影部分面积为25

希望我的解答够清楚,对你有帮助,如果你还有问题可以随时问我。
匿名用户
2013-01-10
展开全部
解:(1)由题意可得∠DAC=∠D′AC=∠ACE,∴AE=CE.
设AE=CE=m,则BE=10-m.
在Rt△ABE中,得m2=82+(10-m)2,∴m=8.2.
∴重叠部分的面积y=
1212•CE•AB=12×8.2×8=32.8(平方单位).
(另法:过E作EO⊥AC于O,由Rt△ABC∽Rt△EOC可求得EO).

(2)由题意可得△DAP≌△D′AP,
∴AD′=AD=10,PD′=DP=x.
在Rt△ABD′中,∵AB=8,∴BD′=102-82=6,于是CD′=4.
在Rt△PCD′中,由x2=42+(8-x)2,得x=5.
此时y=12•AD•DP=12×10×5=25(平方单位).
表明当DP=5时,点D恰好落在BC边上,这时y=25.
(另法:由Rt△ABD′∽Rt△PCD′可求得DP).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式