1个回答
展开全部
令 t = ux, 则 u = t/x, du = (1/x)dt
u = x 时, t = x^2; u = x^2 时, t = x^3.
f(x) = ∫<下x^2, 上x^3> [sint/(t/x)] (1/x)dt = ∫<下x^2, 上x^3>(sint/t)dt
f'(x) = (x^3)'(sinx^3/x^3) - (x^2)'(sinx^2/x^2) = 给定式子
所用公式是 : 若 F(x) = ∫<下h(x), 上g(x)> f(t)dt,
则 F'(x) = g'(x)f[g(x)] - h'(x)f[h(x)]
u = x 时, t = x^2; u = x^2 时, t = x^3.
f(x) = ∫<下x^2, 上x^3> [sint/(t/x)] (1/x)dt = ∫<下x^2, 上x^3>(sint/t)dt
f'(x) = (x^3)'(sinx^3/x^3) - (x^2)'(sinx^2/x^2) = 给定式子
所用公式是 : 若 F(x) = ∫<下h(x), 上g(x)> f(t)dt,
则 F'(x) = g'(x)f[g(x)] - h'(x)f[h(x)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询