线性代数行列式证明 证明 1+a1 1 1 ...1 1 1+a2 1 ...1 1 1 1+a3

线性代数行列式证明证明1+a111...111+a21...1111+a3...1.111...1+an=a1a2...an(1+1\ai)(i从1到n,1\ai的和)我... 线性代数行列式证明
证明
1+a1 1 1 ...1
1 1+a2 1 ...1
1 1 1+a3 ...1
.
1 1 1 ...1+an
=a1a2...an(1+1\ai) (i从1到n ,1\ai的和)
我想知道我的算法为什么不对呀?
展开
 我来答
zzllrr小乐
高粉答主

2016-09-26 · 小乐图客,小乐数学,小乐阅读等软件作者
zzllrr小乐
采纳数:20147 获赞数:78766

向TA提问 私信TA
展开全部

错误的原因:

拆项,一次只能拆开1列(或1行),你拆的太多了,结果肯定不正确。

正解如下:

教育小百科达人
2020-10-01 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:459万
展开全部

(1)从第二行开始,各行都减去第一行

1+a1 1 1 ...1

-a1 a2 0 ...0

-a1 0 a3 ...0

.

-a1 0 0 ...an

(2)第二行除以a2,第三行除以a3...第n行除以an,因此外围提出一个(a2a3...an)

1+a1 1 1 ...1

-a1/a2 1 0 ...0

-a1/a3 0 1 ...0

.

-a1/an 0 0 ...1

*(a2a3...an)

(3)第一行减去下面各行

M 0 0 ...0

-a1/a2 1 0 ...0

-a1/a3 0 1 ...0

.

-a1/an 0 0 ...1

*(a2a3...an)

其中M位置上就是:(1+a1)+a1/a2+a1/a3+...+a1/an

(4)原式=M*(a2a3...an)

=a1a2...an(1+1\ai) 9i从1到n,1\ai的和))

扩展资料:

若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

行列式A中两行(或列)互换,其结果等于-A。 把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式