1个回答
展开全部
两题均为贝努力方程,做一题,另一仿作即可。
(3) x = 0 时, y = 0;
x ≠ 0 时,方程化为 3y'- y/x = 3y^4 lnx
设 z = y^(1-4) = y^(-3), 则 y = 1/z^(1/3), y' = -z'/[3z^(4/3)],
代入微分方程得 -z'/z^(4/3) - 1/[xz^(1/3)] = 3lnx/z^(4/3),
两边同乘 -z^(4/3) , 化为一阶线性微分方程
z' +z/x = 3lnx,
z = e^(-∫dx/x) [ C + ∫3lnx e^(∫dx/x) dx ]
= (1/x) [ C + ∫3xlnxdx ] = (1/x) [ C + (3/2)∫lnxdx^2 ]
= (1/x) [ C + (3/2)x^2lnx - (3/2)∫xdx ]
= (1/x) [ C + (3/2)x^2lnx - (3/4)x^2],
即 y^(-3) = (1/x) [ C + (3/2)x^2lnx - (3/4)x^2]
x = y^3 [ C + (3/2)x^2lnx - (3/4)x^2]
(3) x = 0 时, y = 0;
x ≠ 0 时,方程化为 3y'- y/x = 3y^4 lnx
设 z = y^(1-4) = y^(-3), 则 y = 1/z^(1/3), y' = -z'/[3z^(4/3)],
代入微分方程得 -z'/z^(4/3) - 1/[xz^(1/3)] = 3lnx/z^(4/3),
两边同乘 -z^(4/3) , 化为一阶线性微分方程
z' +z/x = 3lnx,
z = e^(-∫dx/x) [ C + ∫3lnx e^(∫dx/x) dx ]
= (1/x) [ C + ∫3xlnxdx ] = (1/x) [ C + (3/2)∫lnxdx^2 ]
= (1/x) [ C + (3/2)x^2lnx - (3/2)∫xdx ]
= (1/x) [ C + (3/2)x^2lnx - (3/4)x^2],
即 y^(-3) = (1/x) [ C + (3/2)x^2lnx - (3/4)x^2]
x = y^3 [ C + (3/2)x^2lnx - (3/4)x^2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询