数学参数方程怎么学
3个回答
展开全部
方程”的思想 数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系.最常见的等量关系就是“方程”.比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度*时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程.我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤.如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来
展开全部
数形结合,画画图,多推倒几遍公式就好了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
为什么要引入参数方程?开门见山的角度讲,我们最喜欢得到一个y关于x的函数或者x和y组成的方程或者简单地说:关系,如y=y(x)或者y=f(x)或者f(x,y)=0.但是随着研究应用的广泛和问题的深入,我们发现问题来了:这样一个看似简单的问题,做不到啊!为了解决这个问题,一些数学界的聪明人想,如果我用一个参数表示x,再用同样的参数表示y,一个参数值定了,x和y不也就定了吗?变相地说一个x确定了一个y,这不就回到函数或者说曲线或者说方程的含义了吗?这是采取了找中介的办法。曲线救国的办法。他们给他一个数学术语:参数方程。
你比如说
,
我们用去表示x,y,一个确定了,x和y也就确定了,你就可以说一个x对应1个y,这就是一个函数关系。也许你稍微用一点聪明就说,我不需要参数方程,我直接就看出来了,这就是x2+y2=1,一个单位圆。那好,这是一个简单例子,我们来个稍微难一点的,

你能立马消掉,直接得到y关于x的函数关系吗?我们在动一点脑筋,其实也不难,xy=sin,(xy)2+y2=1。
你可以说这也不难,但是行行色色的世界,我们遇到的各种复杂关系多了去了,有时候你还真消不了或者说其他类似的参数,这在大学阶段或者研究阶段屡见不鲜,所以经常还需要用计算机编程数值求解。更为难的是,有时候问题难了,运气差了,你连这样一个联系x和y的中介都找不到,但仍然一个x对应一个y,只是你没办法用一个具体的式子把他们联系起来。所以看到参数方程,你不应该感到害怕,你应该为数学感到庆幸,还有一个参数把x和y联系起来了,通过数学手段还能把参数给消除了,最终得到f(x,y)=0.
说一千,道一万,参数方程是有价值的。
从做题来讲,参数方程最大的价值在于:可以更简单直观地分析题意。比如拿教材一道例题(p24)来说,

要是我们不会参数方程,我们只能设p(x0,y0),然后加上条件x02+y02=4,然后利用中点公式表示中点m

你比如说
,
我们用去表示x,y,一个确定了,x和y也就确定了,你就可以说一个x对应1个y,这就是一个函数关系。也许你稍微用一点聪明就说,我不需要参数方程,我直接就看出来了,这就是x2+y2=1,一个单位圆。那好,这是一个简单例子,我们来个稍微难一点的,

你能立马消掉,直接得到y关于x的函数关系吗?我们在动一点脑筋,其实也不难,xy=sin,(xy)2+y2=1。
你可以说这也不难,但是行行色色的世界,我们遇到的各种复杂关系多了去了,有时候你还真消不了或者说其他类似的参数,这在大学阶段或者研究阶段屡见不鲜,所以经常还需要用计算机编程数值求解。更为难的是,有时候问题难了,运气差了,你连这样一个联系x和y的中介都找不到,但仍然一个x对应一个y,只是你没办法用一个具体的式子把他们联系起来。所以看到参数方程,你不应该感到害怕,你应该为数学感到庆幸,还有一个参数把x和y联系起来了,通过数学手段还能把参数给消除了,最终得到f(x,y)=0.
说一千,道一万,参数方程是有价值的。
从做题来讲,参数方程最大的价值在于:可以更简单直观地分析题意。比如拿教材一道例题(p24)来说,

要是我们不会参数方程,我们只能设p(x0,y0),然后加上条件x02+y02=4,然后利用中点公式表示中点m

已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询