python如何实现提取文本中所有连续的词语

txt文本内容如下:单一结构象形字不是槌的打击乃是水的载歌载舞使鹅卵石臻于完美渐臻佳境日臻完善左右结构友谊的主要效用之一就在使人心中的愤懑抑郁之气得以宣泄弛放这些不平之气... txt文本内容如下:

单一结构
象形字
不是槌的打击
乃是水的载歌载舞
使鹅卵石臻于完美
渐臻佳境
日臻完善
左右结构
友谊的主要效用之一就在使人心中的愤懑抑郁之气得以宣泄弛放
这些不平之气是各种的情感都可以引起的

以上内容是随机爬取的。请问如何用python实现提取里面所有连续的两个字。比如从“单一结构”中依次提取:单一;一结;结构。然后将结果逐行输出到另一个问本中
展开
 我来答
从空去听8
2017-07-20 · TA获得超过7441个赞
知道大有可为答主
回答量:6907
采纳率:93%
帮助的人:5605万
展开全部
经常需要通过Python代码来提取文本的关键词,用于文本分析。而实际应用中文本量又是大量的数据,如果使用单进程的话,效率会比较低,因此可以考虑使用多进程。
python的多进程只需要使用multiprocessing的模块就行,如果使用大量的进程就可以使用multiprocessing的进程池--Pool,然后不同进程处理时使用apply_async函数进行异步处理即可。

实验测试语料:message.txt中存放的581行文本,一共7M的数据,每行提取100个关键词。
代码如下:

[python] view plain copy
#coding:utf-8
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
from multiprocessing import Pool,Queue,Process
import multiprocessing as mp
import time,random
import os
import codecs
import jieba.analyse
jieba.analyse.set_stop_words("yy_stop_words.txt")

def extract_keyword(input_string):
#print("Do task by process {proc}".format(proc=os.getpid()))
tags = jieba.analyse.extract_tags(input_string, topK=100)
#print("key words:{kw}".format(kw=" ".join(tags)))
return tags

#def parallel_extract_keyword(input_string,out_file):
def parallel_extract_keyword(input_string):
#print("Do task by process {proc}".format(proc=os.getpid()))
tags = jieba.analyse.extract_tags(input_string, topK=100)
#time.sleep(random.random())
#print("key words:{kw}".format(kw=" ".join(tags)))
#o_f = open(out_file,'w')
#o_f.write(" ".join(tags)+"\n")
return tags
if __name__ == "__main__":

data_file = sys.argv[1]
with codecs.open(data_file) as f:
lines = f.readlines()
f.close()

out_put = data_file.split('.')[0] +"_tags.txt"
t0 = time.time()
for line in lines:
parallel_extract_keyword(line)
#parallel_extract_keyword(line,out_put)
#extract_keyword(line)
print("串行处理花费时间{t}".format(t=time.time()-t0))

pool = Pool(processes=int(mp.cpu_count()*0.7))
t1 = time.time()
#for line in lines:
#pool.apply_async(parallel_extract_keyword,(line,out_put))
#保存处理的结果,可以方便输出到文件
res = pool.map(parallel_extract_keyword,lines)
#print("Print keywords:")
#for tag in res:
#print(" ".join(tag))

pool.close()
pool.join()
print("并行处理花费时间{t}s".format(t=time.time()-t1))

运行:
python data_process_by_multiprocess.py message.txt
message.txt是每行是一个文档,共581行,7M的数据

运行时间:

不使用sleep来挂起进程,也就是把time.sleep(random.random())注释掉,运行可以大大节省时间。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式