求解两道简单高数小题谢谢
1个回答
展开全部
(1)
(1,0)到(0,1)的线段方程为:y=1-x,0≤x≤1
由弧微分公式:ds=√(1+y'²)dx=√(1+1)dx=√2dx
因此:
∫(L) (x+y) ds
=∫[0→1] (x+1-x) √2dx
=√2∫[0→1] 1 dx
=√2
(2)
令x=Rcost,y=Rsint(0≤t≤π/2)
∫ ydx+xdy
=∫ [0→π/2] (-R²sin²t+R²cos²t) dt
=R²∫ [0→π/2] cos2t dt
=(R²/2)sin2t |[0→π/2]
=0
(1,0)到(0,1)的线段方程为:y=1-x,0≤x≤1
由弧微分公式:ds=√(1+y'²)dx=√(1+1)dx=√2dx
因此:
∫(L) (x+y) ds
=∫[0→1] (x+1-x) √2dx
=√2∫[0→1] 1 dx
=√2
(2)
令x=Rcost,y=Rsint(0≤t≤π/2)
∫ ydx+xdy
=∫ [0→π/2] (-R²sin²t+R²cos²t) dt
=R²∫ [0→π/2] cos2t dt
=(R²/2)sin2t |[0→π/2]
=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询