2017-11-03 · 知道合伙人时尚行家
关注
展开全部
设f(x)=arcsinx f (0)=0(arcsinx)'=1/√1-x^2 f'(0)=1(arcsinx)''=x(1-x^2)^(-3/2) f''(0)=0(arcsinx)'''=(1-x^2)^(-3/2)+3x^2(1-x^2)^(-5/2) f'''(0)=1f(x)=arcsinx在x=0点展开的三阶泰勒公式为:arcsinx=f(0)+f'(0)x+(1/2)f''(0)x^2+(1/6)f'''(0)x^3+o(x^4) 代入以上数值:=x+(1/6)x^3+o(x^4)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询