已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏

已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2)。求F(X)的解析式,当X∈[0... 已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2)。求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值? 展开
笑年1977
2011-01-03 · TA获得超过7.2万个赞
知道大有可为答主
回答量:2.2万
采纳率:81%
帮助的人:1.2亿
展开全部
因为周期为π,则T=2π/ω=π
ω=2
所以 f(x)=Asin(2x+φ)
因为最低点为M(2∏/3,-2)
则最底点是sin(2*2π/3+φ)=sin(4π/3+φ)=-1
则4π/3+φ=2kπ-π/2
φ=2kπ-π/2-4π/3=2kπ-11π/6=2kπ-2π+π/6=2(k-1)π+π/6
因为0<φ<π/2
所以φ=π/6
因为sin(2x+π/6)=-1
则-A=-2
A=2
所以f(x)=2sin(2x+π/6)

当-1<=sin(2x+π/6)<=1

2kπ-π/2<=2x+π/6<=2kπ+π/2
2kπ-2π/3<=2x<=2kπ+π/3
kπ-π/3<=x<=kπ+π/6
所以当x=π/6时有最大值f(π/6)=2
因为|0-π/6|=π/6
|π/6-π/12|=π/12
π/6>π/12
x=0离x=π/6比x=π/12离x=π/6要远些
所以当x=0时有最小值f(0)=1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式