cos(1 i)取绝对值是多少
1个回答
展开全部
解:z1·z2=(cosθ-i)(sinθ+i)=cosθsinθ+1+(cosθ-sinθ)i
|z 1 ·z 2 |* |z 1 ·z 2 |=(cosθsinθ+1)(cosθsinθ+1)+(cosθ-sinθ)(cosθ-sinθ)
=1+2sinθcosθ+(Cosθsinθ)^2+(cosθ)^2+(sinθ)^2-2sinθcosθ
=2+(Cosθsinθ)^2=2+(1/2 sin2θ)^2
=2+1/4 (sin2θ)^2
由-1=<sin2θ<=1 所以 0=<(sin2θ)^2<=1; 0=<1/4 (sin2θ)^2<=1/4;
2=<2+1/4 (sin2θ)^2<=9/4
所以 2=<|z 1 ·z 2 |* |z 1 ·z 2 |<=9/4 ;
√2=<|z 1 ·z 2 |<=3/2
|z 1 ·z 2 |* |z 1 ·z 2 |=(cosθsinθ+1)(cosθsinθ+1)+(cosθ-sinθ)(cosθ-sinθ)
=1+2sinθcosθ+(Cosθsinθ)^2+(cosθ)^2+(sinθ)^2-2sinθcosθ
=2+(Cosθsinθ)^2=2+(1/2 sin2θ)^2
=2+1/4 (sin2θ)^2
由-1=<sin2θ<=1 所以 0=<(sin2θ)^2<=1; 0=<1/4 (sin2θ)^2<=1/4;
2=<2+1/4 (sin2θ)^2<=9/4
所以 2=<|z 1 ·z 2 |* |z 1 ·z 2 |<=9/4 ;
√2=<|z 1 ·z 2 |<=3/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询