求一元三次方程的简易解法,非常感谢

y492746927
2011-01-06
知道答主
回答量:35
采纳率:0%
帮助的人:18.9万
展开全部
标准型
形如aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)的方程是一元三次方程的标准型。
编辑本段公式解法
1.卡尔丹公式法
(卡尔达诺公式法) 特殊型一元三次方程X^3+pX+q=0 (p、q∈R) 判别式Δ=(q/2)^2+(p/3)^3 【卡尔丹公式】 X1=(Y1)^(1/3)+(Y2)^(1/3); X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2; 标准型方程中卡尔丹公式的一个实根
X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω, 其中ω=(-1+i3^(1/2))/2; Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2)。 标准型一元三次方程aX ^3+bX ^2+cX+d=0 令X=Y—b/(3a)代入上式, 可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0。 【卡尔丹判别法】 当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根; 当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根; 当Δ=(q/2)^2+(p/3)^3<0时,方程有三个不相等的实根。
2.盛金公式法
三次方程应用广泛。用根号解一元三次方程,虽然有著名的卡尔丹公式,并有相应的判别法,但使用卡尔丹公式解题比较复杂,缺乏直观性。范盛金推导出一套直接用a、b、c、d表达的较简明形式的一元三次方程的一般式新求根公式,并建立了新判别法。 【盛金公式】 一元三次方程aX^3+bX^2+cX+d=0,(a,b,c,d∈R,且a≠0)。 重根判别式:A=b^2-3ac;B=bc-9ad;C=c^2-3bd, 总判别式:Δ=B^2-4AC。 当A=B=0时,盛金公式①: X⑴=X⑵=X⑶=-b/(3a)=-c/b=-3d/c。 当Δ=B^2-4AC>0时,盛金公式②: X⑴=(-b-Y⑴^(1/3)-Y⑵^(1/3))/(3a); X(2,3)=(-2b+Y⑴^(1/3)+Y⑵^(1/3))/(6a)±i3^(1/2)(Y⑴^(1/3)-Y⑵^(1/3))/(6a); 其中Y(1,2)=Ab+3a(-B±(B^2-4AC)^(1/2))/2,i^2=-1。 当Δ=B^2-4AC=0时,盛金公式③: X⑴=-b/a+K;X⑵=X3=-K/2, 其中K=B/A,(A≠0)。 当Δ=B^2-4AC<0时,盛金公式④: X⑴=(-b-2A^(1/2)cos(θ/3))/(3a); X(2,3)=(-b+A^(1/2)(cos(θ/3)±3^(1/2)sin(θ/3)))/(3a); 其中θ=arccosT,T=(2Ab-3aB)/(2A^(3/2)),(A>0,-1<T<1) 【盛金判别法】 ①:当A=B=0时,方程有一个三重实根; ②:当Δ=B^2-4AC>0时,方程有一个实根和一对共轭虚根; ③:当Δ=B^2-4AC=0时,方程有三个实根,其中有一个两重根; ④:当Δ=B^2-4AC<0时,方程有三个不相等的实根。 【盛金定理】 当b=0,c=0时,盛金公式①无意义;当A=0时,盛金公式③无意义;当A≤0时,盛金公式④无意义;当T<-1或T>1时,盛金公式④无意义。 当b=0,c=0时,盛金公式①是否成立?盛金公式③与盛金公式④是否存在A≤0的值?盛金公式④是否存在T<-1或T>1的值?盛金定理给出如下回答: 盛金定理1:当A=B=0时,若b=0,则必定有c=d=0(此时,方程有一个三重实根0,盛金公式①仍成立)。 盛金定理2:当A=B=0时,若b≠0,则必定有c≠0(此时,适用盛金公式①解题)。 盛金定理3:当A=B=0时,则必定有C=0(此时,适用盛金公式①解题)。 盛金定理4:当A=0时,若B≠0,则必定有Δ>0(此时,适用盛金公式②解题)。 盛金定理5:当A<0时,则必定有Δ>0(此时,适用盛金公式②解题)。 盛金定理6:当Δ=0时,若B=0,则必定有A=0(此时,适用盛金公式①解题)。 盛金定理7:当Δ=0时,若B≠0,盛金公式③一定不存在A≤0的值(此时,适用盛金公式③解题)。 盛金定理8:当Δ<0时,盛金公式④一定不存在A≤0的值。(此时,适用盛金公式④解题)。 盛金定理9:当Δ<0时,盛金公式④一定不存在T≤-1或T≥1的值,即T出现的值必定是-1<T<1。 显然,当A≤0时,都有相应的盛金公式解题。 注意:盛金定理逆之不一定成立。如:当Δ>0时,不一定有A<0。 盛金定理表明:盛金公式始终保持有意义。任意实系数的一元三次方程都可以运用盛金公式直观求解。 当Δ=0(d≠0)时,使用卡尔丹公式解题仍存在开立方。与卡尔丹公式相比较,盛金公式的表达形式较简明,使用盛金公式解题较直观、效率较高;盛金判别法判别方程的解较直观。重根判别式A=b^2-3ac;B=bc-9ad;C=c^2-3bd是最简明的式子,由A、B、C构成的总判别式Δ=B^2-4AC也是最简明的式子(是非常美妙的式子),其形状与一元二次方程的根的判别式相同;盛金公式②中的式子(-B±(B^2-4AC)^(1/2))/2具有一元二次方程求根公式的形式,这些表达形式体现了数学的有序、对称、和谐与简洁美。 盛金公式解法的以上结论,发表在《海南师范学院学报(自然科学版)》(第2卷,第2期;1989年12月,中国海南。国内统一刊号:CN46-1014),第91—98页。范盛金,一元三次方程的新求根公式与新判别法。(NATURAL SCIENCE JOURNAL OF HAINAN TEACHERES COLLEGE , Hainan Province, China. Vol. 2, No. 2;Dec,1989), A new extracting formula and a new distinguishing means on the one variable cubic equation., Fan Shengjin. PP·91—98
刀醉呱4460
2011-01-03
知道答主
回答量:66
采纳率:0%
帮助的人:33.1万
展开全部
怎么会有,,现在的教学已经够简易了,,只能在做题目中自己找到适合自己的诀窍,,,别人说得也没用,,,而且你问的也不具体,,起码弄几道题上来,,你试着做下,,看看哪里可以简便些
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
guangliang0207
2011-01-04 · TA获得超过3431个赞
知道小有建树答主
回答量:1156
采纳率:75%
帮助的人:254万
展开全部
用求根公式的话都比较复杂,比较简单的一种方法是:你到网上查一下盛金公式,然后用excel算出A、B、C、△的值,然后根据分类,进一步带入相关的求根公式就可以直接算出结果。不过盛金公式似乎存在缺陷,就是A=0,B=0,且△=0的情况。没说明清楚。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lz12262770
2011-01-05 · TA获得超过108个赞
知道答主
回答量:13
采纳率:0%
帮助的人:13.1万
展开全部
用matlab、mathmatic等软件可以很轻松地求解高次方程零点问题。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2011-01-05
展开全部
叫你爸妈给你出题目做,也可以在网上找一些相关的资料
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式