高数不定积分(有理函数的积分)

高数不定积分(有理函数的积分)如图求详细过程... 高数不定积分(有理函数的积分)如图

求详细过程
展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
若以下回答无法解决问题,邀请你更新回答
力梦依b
2017-12-04 · TA获得超过896个赞
知道小有建树答主
回答量:1347
采纳率:84%
帮助的人:103万
展开全部
1、原式=(1/2)*∫d(x^2-2x+5)/(x^2-2x+5)+2∫dx/(x^2-2x+5)
=(1/2)*ln|x^2-2x+5|+2∫dx/[(x-1)^2+4]
=(1/2)*ln|x^2-2x+5|+arctan[(x-1)/2]+C,其中C是任意常数
2、令u=tan(x/2),则cosx=(1-u^2)/(1+u^2),dx=2du/(1+u^2)
原式=∫1/[3+(1-u^2)/(1+u^2)]*2du/(1+u^2)
=∫du/(2-u^2)
=(√2/4)*∫[1/(√2-u)+1/(√2+u)]du
=(√2/4)*[ln|√2+u|-ln|√2-u|]+C
=(√2/4)*[ln|√2+tan(x/2)|-ln|√2-tan(x/2)|]+C,其中C是任意常数
追问
没做我的这道题目啊
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式