在△ABC所在平面内求一点P,使AP²+BP²+CP²最小。

如题... 如题 展开
 我来答
weibangtuo
2011-01-06 · TA获得超过230个赞
知道小有建树答主
回答量:69
采纳率:0%
帮助的人:94.5万
展开全部
解:设三角形在平面直角坐标系中,A(a,a1);B(b,b1); C(c,c1);P(x,y)
则AP²+BP²+CP²=(x-a)²+(y-a1)²+(x-b)²+(y-b1)²+(x-c)²+(y-c1)²
=3x²-2(a+b+c)x+a²+b²+c²+3y²-2(a1+b1+c1)x+a1²+b1²+c1²
=3[x-(a+b+c)/3]²-3[(a+b+c)/3]²+a²+b²+c²+3[y-(a1+b1+c1)/3]²-3[(a1+b1+c1)/3]²+a1²+b1²+c1²
所以当X=(a+b+c)/3且Y=(a1+b1+c1)/3时,使得AP²+BP²+CP²最小,
此时,点p恰为 △ABC的重心。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式