高数不定积分求导.
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
2个回答
展开全部
不定积分求导,答案为(arctanx)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
原式=(1/2)*∫arctan^xd(x^)
=(1/2)*arctan^x*x^-(1/2)*∫x^d(arctan^x)
=x^*arctan^x/2 -(1/2)*∫x^*[2*arctanx/(1+x^)]dx
=x^*arctan^x/2-∫[x^/(1+x^)]*arctanx*dx
=x^*arctan^x/2-∫arctanxdx+∫arctanxdx/(1+x^)
=x^*arctan^x/2-x*arctanx+∫xd(arctanx)+∫artanx*d(arctanx)
=x^*arctan^x/2-x*arctanx+∫[x/(1+x^)]dx+arctan^x/2
=x^*arctan^x/2-x*arctanx+arctan^x/2+∫(1/2)*(1+x^)*d(1+x^)
=x^*arctan^x/2-x*arctanx+arctan^x/2+ln(1+x^)/2
=(1/2)*arctan^x*x^-(1/2)*∫x^d(arctan^x)
=x^*arctan^x/2 -(1/2)*∫x^*[2*arctanx/(1+x^)]dx
=x^*arctan^x/2-∫[x^/(1+x^)]*arctanx*dx
=x^*arctan^x/2-∫arctanxdx+∫arctanxdx/(1+x^)
=x^*arctan^x/2-x*arctanx+∫xd(arctanx)+∫artanx*d(arctanx)
=x^*arctan^x/2-x*arctanx+∫[x/(1+x^)]dx+arctan^x/2
=x^*arctan^x/2-x*arctanx+arctan^x/2+∫(1/2)*(1+x^)*d(1+x^)
=x^*arctan^x/2-x*arctanx+arctan^x/2+ln(1+x^)/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询