第二个式子,2 θ×θ怎么算来的
极坐标下的曲线r(θ)如上图。所求ds用图中三角形斜边代替,三角形近似为直角三角形。有:ds=√((rdθ)²+(dr)²)=√((rdθ)²+(dr/dθ)²(dθ)²)=√(r²+(dr/dθ)²) dθ=√(r²+r'²) dθ
直角坐标与极坐标的关系x=r(θ)cosθ,y=r(θ)sinθ
dx/dθ=r'(θ)cosθ-r(θ)sinθ
dy/dθ=r'(θ)sinθ+r(θ)cosθ
(dx/dθ)^2+(dy/dθ)^2=[r'(θ)]^2+[r(θ)]^2
ds=√[(dx)²+(dy)²]=√[(dx/dθ)²+(dy/dθ)²]dθ=√((r'(θ))^2+(r(θ))^2)dθ
如果两个边互相垂直,那么这两边所夹的两个角相等
设圆的圆心为O'
因为线速度v与圆的半径垂直,OO'垂直于PM
所以θ=a/2
即a=2θ
扩展资料:
在三维笛卡尔坐标系中,三个平面,xy-平面,yz-平面,xz-平面,将三维空间分成了八个部分,称为卦限(octant) 空。第Ⅰ卦限的每一个点的三个坐标都是正值。
二维的直角坐标系是由两条相互垂直、0 点重合的数轴构成的。在平面内,任何一点的坐标是根据数轴上对应的点的坐标设定的。在平面内,任何一点与坐标的对应关系,类似于数轴上点与坐标的对应关系。
参考资料来源;百度百科-直角坐标